A Technique for Stacking Digitized Photographic Plates

Abstract

With the advent of fast scanning microphotometers and inexpensive digital mass storage, there
has been a resurgence of interest in performing deep (B < 25) panoramic surveys by co-adding
large numbers (~ 10%) of digitized photographic plates. While the Kodak IIIa emulsions are
highly linear recorders of photographic grain density, we demonstrate that the threshold and
saturation levels which restrict the dynamic range of the emulsion can distort the higher
statistical moments of the grain density fluctuations (variance, skewness, etc.) along the linear
part of the characteristic curve. The variance of the grain fluctuations is only additive between
digitized plates that preserve the Poissonian grain noise. In order to compensate for the
statistical distortion, we derive the necessary pixel weighting for five scanning aperture sizes
(2 pm, 4 pm, 8 pm, 16 pm, 32 pm) as a function of the grain density.

1. Introduction

Wide-field photographic plates continue to play a crucial r8le in astronomical surveys (West
1991; Irwin 1992). In an age of rapidly evolving electronic detectors, plates still retain the unique
ability to record high-density photometric information over fields of view exceeding a few degrees
with a spatial resolution limited only by the seeing. Recent improvements in the performance of fast
scanning microphotometers (e.g. COSMOS) now make it possible to extract ~ 10° data pixels from
a plate in a matter of a few hours. This has allowed various groups to compile objective catalogues
of very large numbers of galaxies. In the Edinburgh/Durham Galaxy Survey, Heydon-Dumbleton et
al. (1988) scanned 60 overlapping pilates that cover almost one steradian of the southem sky in order
to compile a catalogue of roughly one million galaxies down to a limiting magnitude of B; = 20,
Rapid plate scanning also affords the opportunity to co-add or "stack’ a large number of photographic
plates in order to increase detection limit sensitivity over a wide field. Tsvetkov (1992) reports that
there are at least 1.3 million wide-field plates in archives throughout the astronomical community.
Roughly speaking, this means that each square degree is covered by 30 f? plates, where f is the
average field size in degrees, although these archives are heavily biased towards certain regions of the
sky largely in the northem hemisphere. Moreover, a fair proportion of the plate archives will have
been taken under less than ideal conditions, and hence will be of litile use.

Malin (1988) has demonstrated that the plate limit improves by about two magnitudes when
36 UK Schmidt plates are co-added using traditional laboratory techniques. More recently, Hawkins
(1991) used the COSMOS microphotometer to scan 58 plates of a common field; these were added
in density space to form an image whose completeness limit was B; = 24 mag with some images
going a magnitude fainter. The importance of this result is exemplified by the number-magnitude
relation for field galaxies: an improvement in the limiting sensitivity from B, = 22 mag t0 B, =24 mag
increases the detection rate of field galaxies by an order of magnitude.

2. The Statistics of Photographic Plates

For a given aperture size, the central limit theorem ensures that the density fluctuations obey
Poissonian or Gaussian statistics (Marriage & Pitts 1956), even in the limit that the scanning aperture
size is of order the emulsion grain size (Trabka 1969). However, it is clear from Fig. 1a that the width
of the grain noise statistics does not conform to a simple Poissonian (YN) model. This is underscored
by Fig. 1b which shows that there is a systematic trend in the skewness of the density fluctuations with
increasing grain density. In the following section, we present a statistical treatment that attempts to
explain the basic behavior in Figs. 1a and 1b. Any departure from Poissonian statistics has important
consequences for co-adding digitized photographic plates.

When we add together separate images with mean signal 5, and s,, it is normally assumed that

the noise in both images, n, and n,, obeys Poissonian statistics. If n, =e”/.s_l and n2=ez\[s_2 , the
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Figure 1. a, b. The characteristic curve (or p) for a scanned ITla-F photographic plate measured from the
density step wedges. In a, the error bars correspond to 110, and in b, the vertical bars indicate the magnitude
and sign of the skewness, x. ¢, d. The output response to a linear detector in the presence of saturation and
threshold levels. When the linear response is restricted to a finite dynamic range, both moments deviate from
their true Poissonian values.

variance of the noise in the summed image is simply the sum in quadrature of the original variances,

ie., Juf’ +n: = efsl +e;s2'. Therefore, in summing images, we are making at least two general
assumptions: #, and n, are statistically independent and are govemed by Poissonian noise such that
e, = €, = 1. The first assumption is discussed by Shopbell, Bland-Hawthom & Malin (1992) and
reduces to showing that the weight of the covariance term, w,, is negligible, viz,

G5=W, N, +W, s < Wy, M

where w, = €,%, w, = €,7, and a;” is the variance of the summed image, For the second assumption,
if the noise distributions deviate from Poisson statistics, the comrection factors w, and w, need to be
applied to the individual variances. These weights are derived below.
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3. The Restricted Poissonian Distribution

The photographic plate is a highly linear recorder of photographic density. After Dainty &
Shaw (1974), we demonstrate that the measured density fluctuations in Figs. 1a and 1b can be
understood with a relatively straightforward model. For ease of illustration, consider a linear photon
detector comprising an infinite number of recording cells that is uniformly exposed with an average
number of p photons per cell. The photon distribution over the cells will be governed by Poisson
statistics such that the proportion of cells receiving r photons will be p’e*/r!. In practice, there are
minimum (threshold) and maximum (saturation) exposure levels that a detector can register. Assume
that the first (¢ - 1) photons do not generate counts whereas the rth photon registers one count.
Assume further that s or a higher number of photons register exactly s counts. The mean number of
counts over all cells is then

w=E(@)=a(l-Pe?) @)
where a = 5-¢+ 1 and
s-1 k o’
p__ ): E (3)
gp-1r=0 "1
We have used the form of the expectation, E, 1o determine higher moments of the distribution, viz.
E(pd)=a(1-ye ?) )
E(p*)=a’(1-8e7P) ()
where the summation terms are given by
! s-1 k ,
y=— ¥ ¥ ek-2-nE | )
& k=t-1r=0 !
1 s-1 k
8== Y Y @lk-t+2][(k~¢+2)-1] +1)P @)
@ k=t-1r=0

Equations (4) and (5) provide information on the variance, o2, and the skewness, x, of the distribution,
since

o*<E(@p™)-y* ®

C=E(p*-3pot-p? ®

For an ideal linear detector with infinite dynamic range, the expected values of the mean, standard
deviation and skewness for a Poisson distribution are easily derived. In the presence of detector limits,
all three statistical moments deviate from their true Poissonian values; the induced ‘statistical
distortion' is illustrated in Figs. 1c and 1d. Intuitively, as the value of p approaches either detector
limit from the linear section of the curve, one tail of the distribution measuring the statistical
uncertainty in p starts to disappear. A comparison of Figs. 1a and 1b with Figs. lc and 1d
respectively reveals that the restricted Poissonian mode! explains the major trends in the scanned
density step wedges.
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Figure 2. A plot that shows how the measured variance differs from the Poissonian variance as a function of
photographic density and scanning aperture size. The values along the vertical axis are inversely related to the
corrective weights (see text). The statistical distortion is clearly more important at high density and for small
scanning apertures. The dashed line is an extrapolation as the numerical method fails in this region.

4. Discussion

In order to simulate the response of the grain density fluctuations to the presence of threshold
and saturation levels, we determine the linear dynamic range that produces the fluctuation level at
some intermediate (midpoint) value along the straight section of the characteristic curve. We note in
Fig. 1 that the maximum statistical dispersion occurs roughly at the midpoint of the linear ramp. Since
the threshold and saturation levels can only reduce the statistical dispersion, it follows that the grain
density for which the statistical response is most likely to exhibit Poissonian behavior is that which
produces the largest grain dispersion. Furenlid, Schoening & Carder (1977) have calibrated the grain
density fluctuations, 6,, on the linear part of the characteristic curve for a range of photographic
emulsions. They find that under a wide range of conditions, there exists a unique relationship between
o, and grain density, D: for the Kodak Illa emulsions, we adopt (o,/D) = (0.64/a) where a is the
square aperture dimension in microns. We compute statistical models which attempt to simulate the
grain density response for five aperture sizes; 2, 4, 8, 16, 32 pm. The expected grain density
fluctuations are 32%, 16%, 8%, 4%, 2% respectively. For all five models, the positions of the
threshold (T), midpoint (M) and saturation (S) levels remain in a fixed ratio with respect to the linear
scale defined by a zero density (Z) and a peak density (P). We adopt the following representative
density values in each of the simulations: Z = 0.0, T = 0.6, M = 2.0, S = 3.4, P =4.0. An important
boundary condition in our model is that the density fluctuation falls to zero at zero density. However,
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in reality, we note from Fig. 1a that there will be finite background noise at both extremes of the
density range. The results arc summarized in Fig. 2. It is clear that the statistical distortion is
particularly severe for the smaller apertures and tends to restrict the linear density response,
particularly to higher densities. For a scanning aperture of 4 ym, notice that the higher statistical
moments are truly Poissonian for only about half of the straight section of the characteristic curve.

In practice, one corrects for the statistical distortion by dividing out the form of the measured
to true variance in Fig. 2. The necessary pixel weights, w, and w,, are functions of density and are
essentially the reciprocal of the values plotted in Fig. 2. The first statistical moment is handled by the
density-to-intensity transformation; the third and higher moments are unlikely to have much influence.
In stacking N digitized plates, with the proposed corrections, we would expect the magnitude limit to
improve in proportion to 2.5 log \N. Thus, a hundred co-added plates could in principle increase the
sensitivity limit by an order of magnitude everywhere within the full field.
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